近期週期性拉伸應用於口腔細胞系統相關研究的文獻

Cell type	Device	Condition	References
human periodontal ligament cells (hPDLCs)	Homemade	10%-20% (6/ 24h)	J Ma et al. Arch Oral Biol, 2014
human periodontal ligament cells (hPDLCs)	Flexcell device	12%, 0.1Hz	Gene, 15;566(1):13-7, 2015
human periodontal ligament cells (hPDLCs)	FX-5000T	10%	PLoS One, 2014
human periodontal ligament cells (hPDLCs)	FX-5000T	20%, 0.1Hz	PLoS One, 2013

近期週期性拉伸應用於口腔細胞系統相關研究的文獻

- ➤ Ma, J., et al., Cyclic stretch induced gene expression of extracellular matrix and adhesion molecules in human periodontal ligament cells. Arch Oral Biol, 2015. **60**(3): p. 447-55.
- ➤ Chen, Y., et al., Cyclic stretch and compression forces alter microRNA-29 expression of human periodontal ligament cells. Gene, 2015. **566**(1): p. 13-7.
- ▶ Pan, J., et al., Cyclic strain-induced cytoskeletal rearrangement of human periodontal ligament cells via the Rho signaling pathway. PLoS One, 2014. 9(3): p. e91580.
- Wang, Li, et al., Pathological Cyclic Strain-Induced Apoptosis in Human Periodontal Ligament Cells through the RhoGDIα/Caspase-3/PARP Pathway. PLoS One, 2013. 8(10): p. 1-8

Role of cyclic strain in the differentiation of MSCs

The microenvironment of cells not only contains biochemical factors that influence differentiation, but also exerts hemodynamic forces, such as cyclic strain.

➤ Cyclic strain forces can influence the differentiation of MSCs:

Stem cell type	Differentiation outcome	Condition	References
 Sheep BMMSCs Human BMMSCs Human ASCs 	Endothelial	1. 1 Hz, 5% 2. 1 Hz, 10%	 Engelmayr et al., 2006 O'Cearbhaill et al., 2008 Shojaei et al., 2013
 Human BMMSCs Rat BMMSCs 	Smooth muscle cell	1. 1 Hz, 5% 2. 1 Hz, 10%	 Hamilton et al., 2004 Park et al., 2004 Nieponice et al., 2007 Ghazanfari et al., 2009 O'Cearbhaill et al., 2010
Cardiac progenitor cells	Cardiac myocyte	1. 5% & 10%	1. Kristin M. et al., 2016

近期週期性拉伸應用於幹細胞分化成肌腱韌帶細胞相關研究的文獻

- ➤ Ju Y, et al., Mechanical stretch-induced changes in cell morphology and mRNA expression of tendon/ligament-associated genes in rat bone-marrow mesenchymal stem cells. Mol Cell Biomech., 2010
- ➤ Liu W., et al., Elongated cell morphology and uniaxial mechanical stretch contribute to physical attributes of niche environment for MSC tenogenic differentiation. Cell Biol Int., 2013.
- ➤ Jung Yul Lim, et al., Mechanical Stretching for Tissue Engineering: Two-Dimensional and Three-Dimensional Constructs. Tissue Eng Part B Rev., 2012.
- ➤ Kasper C. et al., Induction of Tenogenic Differentiation Mediated by Extracellular Tendon Matrix and Short-Term Cyclic Stretching. Stem Cells Int., 2016.

近期週期性拉伸應用於循環系統相關研究的文獻

Cell type	Device	Condition	References
cardiomyocyte	Flexcell FX- 2000	10 or 20%	PLoS One, 2015
human umbilical vein endothelial cells (HUVECs)	Flexcell	10%	Cell Biol Int., 2015
rat cardiac myoblasts H9c2 cells	Flexcell FX- 2000	20%	Eur J Heart Fail., 2013
Endothelial cells	Flexcell	10 or 20%, 1Hz	Biotechnol Prog., 2014

近期週期性拉伸應用於循環系統相關研究的文獻

- 1. Wilkins, J.R., et al., The interplay of cyclic stretch and vascular endothelial growth factor in regulating the initial steps for angiogenesis. Biotechnol Prog, 2015. 31(1): p. 248-57.
- 2. Sung, L.C., et al., Lycopene inhibits cyclic strain-induced endothelin-1 expression through the suppression of reactive oxygen species generation and induction of heme oxygenase-1 in human umbilical vein endothelial cells. Clin Exp Pharmacol Physiol, 2015. 42(6): p. 632-9.
- 3. Shojaei, S., et al., Comparative analysis of effects of cyclic uniaxial and equiaxial stretches on gene expression of human umbilical vein endothelial cells. Cell Biol Int, 2015. 39(6): p. 741-9.
- 4. Rodriguez, A.I., et al., MEF2B-Nox1 signaling is critical for stretch-induced phenotypic modulation of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2015. 35(2): p. 430-8.

近期週期性拉伸應用於神經細胞系統相關研究的文獻

Cell type	Device	Condition	References
Neural stem and progenitor cell (NSPCs)	J-Flex device	10%	Sci Rep., 17;5:8499, 2015 (neurons: 3 days, astrocytes: 7 days, oligodendrocytes: 5 or 7 days)
SH-SY5Y human neuroblastoma cells (ATCC, CRL-2266)	Flexcell device	10%, 0.25Hz (0.25 Hz, 120 min/d for 7 days)	Biores Open Access. ;2(3):212-6, 2013
Organotypic hippocampal slice cultures (OHSC)	Homemade	_	IRCOBI Conference 2012

近期週期性拉伸應用於神經細胞系統相關研究的文獻

- Claudia C. dos Santos, et al., Neuroimmune Regulation of Ventilator-induced Lung Injury. *Am J Respir Crit Care Med*, 2011
- ➤ David F. Meaney, et al., Biomechanics of Concussion. Clin Sports Med, 2011.
- ➤ Gwen B. Effgen, et al., A Model of Repetitive, Mild Traumatic Brain Injury and a Novel Pharmacological Intervention to Block Repetitive Injury Synergy. *IRCOBI Conference*, 2012.
- ➤ Stacy J. Gladman, et al., Improved Outcome after Peripheral Nerve Injury in Mice with Increased Levels of Endogenous Omega-3 Polyunsaturated Fatty Acids. *The Journal of Neuroscience*, 2012.
- Suzanne Higgins et al., Inducing Neurite Outgrowth by Mechanical Cell Stretch. *BioResearch*, 2013.
- ➤ Janahan Arulmoli, et al., Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. *Sci Rep*, 2015.

動態拉伸應用於肺細胞系統相關研究的文獻

Cell type	Device	Condition	References
Human pulmonary artery endothelial cells (HPAECs)	FX-4000T Flexcell	5 %	PLoS One, 2014
Human lung microvessel endothelial cells (ECs)	Flexcell device	5-18%	Microvasc Res., 2014
Human pulmonary artery endothelial cells (EC)	FX-3000T Flexcell	18%, 0.5 Hz, 4h	PLoS One, 2014
human periodontal ligament cells (hPDLCs)	FX-5000T	20%, 0.1Hz	PLoS One, 2013

近期動態拉伸應用於肺泡細胞系統相關研究的文獻

- 1. Sun, X., et al., The NAMPT promoter is regulated by mechanical stress, signal transducer and activator of transcription 5, and acute respiratory distress syndrome-associated genetic variants. Am J Respir Cell Mol Biol, 2014.
- O'Donnell, J.J., 3rd, et al., Gap junction protein connexin43 exacerbates lung vascular permeability. PLoS One, 2014. 9(6): p. e100931.
- 3. Wolfson, R.K., B. Mapes, and J.G. Garcia, *Excessive mechanical stress increases HMGB1 expression in human lung microvascular endothelial cells via STAT3.* Microvasc Res, 2014...
- 4. Mitra, S., et al., GADD45a promoter regulation by a functional genetic variant associated with acute lung injury. PLoS One, 2014..
- 5. Meliton, A., et al., KRIT1 Mediates Prostacyclin-induced Protection Against Lung Vascular Permeability Induced by Excessive Mechanical Forces and TRAP6. Am J Respir Cell Mol Biol, 2015.
- 6. Dong, W.W., et al., Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism. Free Radic Biol Med, 2015
- 7. Gu, C., et al., Protective role of p120-catenin in maintaining the integrity of adherens and tight junctions in ventilator-induced lung injury. Respir Res, 2015. **16**: p. 58.
- 8. Gawlak, G., et al., *Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.* FASEB J, 2014. **28**(7): p. 3249-60.